Skip to the content.


Original source: Filella, M., May, P.M., 2023. The aqueous solution chemistry of germanium under conditions of environmental and biological interest: Inorganic ligands. Applied Geochemistry 155, 105631.

Best stability constant values for germanium species, 25 °C and I 0 mol L-1:

Reaction log K
Ge(OH)4 + 2 e- = Ge2+ + 4H2O -7.206
GeO2(OH)22– + H+ = GeO(OH)3 12.76
GeO(OH)3 + H+ = Ge(OH)4 9.099
8 Ge(OH)4 + 3 OH- = Ge8(OH)353- 28.33
GeO2(hexag,s) + 2 H2O = Ge(OH)4 –1.373
GeO2(tetra,s) + 2 H2O = Ge(OH)4 –4.999
Ge(OH)4 + 4 H+ + 6 F- = GeF62- + 4 H2O 27.98
Ge(OH)4 + 5 H+ + 6 F- = GeHF6- + 4 H2O 28.80
Ge(OH)4 + 4 H+ + 4 F- = GeF4 + 4 H2O 20.14
Ge(OH)4 + 3 H+ + 4 F- = GeF4(OH)- + 3 H2O 19.08
Ge(OH)4 + 3 H+ + 2 F- = GeF2(OH)- + 3 H2O 9.345


Abramowitz, S., Wagman, D.D., Parker, V.B., Garwin, D., 1984. Critical evaluation of thermodynamic data – A research activity. Thermochem. Its Appl. Chem. Biochem Syst. 119, 803-614.

Ahrland, S., Chatt, J., Davies, N.R., 1958. The relative affinities of ligand atoms for acceptor molecules and ions. Q. Rev. Chem. Soc. 12, 265–276.

Alekseeva, I.I., Nemzer, I.I., 1971. State of germanium(IV) in acid solutions. Russ. J. Inorg. Chem. 16, 987–989.

Andrianov, A.M., Nazarenko, V.A., 1966. Hydroxo-complexes of germanium(IV). Russ. J. Inorg. Chem. 11, 816–819.

Angerstein, A., Davidson, W., 1961. The absorption of hydrochloric acid solutions of germanium(IV) chloride in the near ultraviolet. Z. anorg. allg. Chem. 310, 26–31.

Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nichols, M.C. Eds., 2004–2022. Handbook of Mineralogy, Mineralogical Society of America, Chantilly, VA, USA.

Antikainen, P.J., 1957. Ionisation and thermodynamic properties of germanic acid in aqueous solutions. Suomen Kem. 30B, 123–128.

Antikainen, P.J., 1960. Studies on concentrated solutions prepared by ion exchange I. Equilibria involving mono- and polynuclear oxyacids of germanium. Suomen Kem. 33B, 38–40.

Antonovich, V.P., Nevskaya, E.M., Suvorova, E.N., 1977. Spectrophotometric determination of the hydrolysis constants of monomeric antimony(III) ions. Russ. J. Inorg. Chem. 22, 696–699.

Atkins, P., de Paula, J., 2006. Atkin’s Physical Chemistry, 8th Edn., Oxford Univ. Press, Oxford, U.K.

Babko, A.K., Lukachina, V.V., Nabivanets, B.I., 1963. Solubility and acid-base properties of tantalum and niobium hydroxides. Russ. J. Inorg. Chem. 8, 957–961.

Baes, C.F., Mesmer, R.E., 1976. The Hydrolysis of Cations. Wiley, New York.

Barin, I., Platzki, G., 1995. Thermochemical Data of Pure Substances, 3rd Edn. VCH, Weinheim, Germany.

Benoit, R.L., Clerc, P., 1961. Chlorogermanium(IV) species in acid media. J. Phys. Chem. 65, 676–680.

Benoit, R.L., Place, J., 1963. Fluoride complexes of germanium(IV) in aqueous solutions. Can. J. Chem. 41, 1170–1180.

Bernstein, L.R., Waychunas, G.A., 1987. Germanium crystal chemistry in hematite and goethite from the Apex Mine, Utah, and some new data on germanium in aqueous solution and in stottite. Geochim. Cosmochim. Acta 51, 623–630.

Biver, M., Filella, M., 2018. Germanium and solid sample digestion with aqua regia: the nescience of chemistry basics and its sequels. Monatsh. Chem. 149, 461–465.

Brown, P.L., Ekberg, C., 2016. Hydrolysis of Metal Ions. Wiley.

Carpéni, G., 1948. Equilibres électrolytiques entre ions, molécules simples et molécules condensées.—II. Le point «isohydrique». Conséquences et applications. Bull. Soc. Chim. Fr. 15, 629–637.

Cempirek, J., Groat, L.A., 2013. Note on the formula of brunogeierite and the first bond-valence parameters for Ge2 +. J. Geosci. 58, 71–74.

Charlot, G., Collumeau, A., Marchon, M.J.C., 1971. Selected Constants. Oxidation-Reduction Potentials of Inorganic Substances in Aqueous Solution. Butterworths, London.

Ciavatta, L., Iuliano, M., Porto, R., Vasca, E., 1990. Fluorogermanate(IV) equilibria in acid media. Polyhedron, 9, 1263–1270.

Coufal, O., Sezemský, P., Živný, O., 2005. Database system of thermodynamic properties of individual substances at high temperatures. J. Phys. D: Appl. Phys. 38, 1265–1274.

Cox, J.D., Wagman, D.D., Medvedev, V.A., 1989. CODATA. Key Values for Thermodynamics. CODATA Series on Thermodynamic Properties, 0-89116-758-7, Hemisphere Publishing Corp., New York, 271 pp.

De la Cuadra, A., 1990. On polygermanate ion (review and critical study). Anales de Quimica 86, 221–229.

Dennis, L. M., 1928. Germanium. Z. anorg. allg. Chem. 174, 97–141.

Ellwood, M.J., Maher, W.A., 2003. Germanium cycling in the waters across a frontal zone: the Chatham Rise, New Zealand. Mar. Chem. 80, 145–159.

Evdokimov, D.Ya., Kogan, E.A., 1963. A study of germanium dioxide solubility in water at different temperatures. Ukrainskii Khimicheskii Zhurnal 29, 1020–1022; values as given in Pokrovski and Schott, 1998 [in Russian].

Everest, D.A., 1953. The chemistry of bivalent germanium compounds. Part IV. Formation of germanous salts by reduction by hypophosphorous acid. J. Chem. Soc. 4117–4120.

Everest, D.A., Harrison, J.C., 1957. Studies in the chemistry of quadrivalent germanium. Part IV. The chemical nature of solutions of quadrivalent germanium in hydrochloric or hydrobromic acid. J. Chem. Soc. 1820–1823.

Everest, D.A., Terrey, H.,1950. Germanous oxide and sulphide. J. Chem. Soc. 2282–2285.

Filella, M., Matoušek, T., 2022. Germanium in Lake Geneva (Switzerland/France) along the spring productivity period. Appl. Geochem. 143, 105352.

Filella, M., May, P.M., 2019a. The aqueous chemistry of tellurium: critically-selected equilibrium constants for the low-molecular-weight inorganic species. Environ. Chem. 16, 289–295.

Filella, M., May, P.M., 2019b. The aqueous solution thermodynamics of tantalum under conditions of environmental and biological interest. Appl. Geochem. 109, 104402.

Filella, M., May, P.M., 2020. The aqueous solution thermodynamics of niobium under conditions of environmental and biological interest. Appl. Geochem. 122, 104729.

Fleischer, M., Mandarino, J.A., 1995. Glossary of Mineral Species. Seventh edition. Mineralogical Record, Tucson, Arizona, 280 pp.

Froelich, P.N., Blanc, V., Mortlock, R.A., Chillrud, S.N., 1992. River fluxes of dissolved silica to the ocean were higher during glacials: Ge/Si in diatoms, rivers and oceans. Paleoceanography 7, 739–767.

Garvin, D., Parker, V.B., Wagman, D.D., 1981. Chemical Thermodynamic Data Banks. NBSIR 81-2341. U.S. Department of Commerce, National Bureau of Standards, Washington, DC.

Gayer, K.H., Zajicek, O.T., 1964. The solubility of germanium(IV) oxide in aqueous NaOH solutions at 25oC. J. Inorg. Nucl. Chem. 26, 951–954.

Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., Wanner, H., 1992. Chemical Thermodynamics of Uranium. Wanner, H., Forest, I., Nuclear Energy Agency, Organisation for Economic Co-operation and Development, Eds., vol. 1, North Holland Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 715 pp.

Gulezian, C.E., Müller, J.H., 1932. The conductivity and degree of hydrolysis of sodium bigermanate and the primary dissociation constant of germanic acid. J. Am. Chem. Soc. 54, 3151– 3158.

Haas, J., Konopik, N., Mark, F., Neckel, A., 1964a. Zur polymerisation der Germaniumsäure, 1. Mitt. Bestimmung der mittleren Ladungszahlen und mittleren Polymerisationsgerade auf Grund potentiometrischer Titrationen. Monatsh. Chem. 95, 1141–1165.

Haas, J., Konopik, N., Mark, F., Neckel, A., 1964b. Zur polymerisation der Germaniumsäure, 2. Ermittlung der Komplexzusammensetzungen und Berechnung der Stabilitätskonstanten auf Grund graphischer Ausgleichsverfahren. Monatsh. Chem. 95, 1166–1172.

Haas, J., Konopik, N., Mark, F., Neckel, A., 1964c. Zur polymerisation der Germaniumsäure, 3. Ermittlung der Komplexzusammensetzungen und der Stabilitätskonstanten mehrkerniger Komplexe auf Grund rechnerischer Ausgleichsverfahren. Monatsh. Chem. 95, 1173–1187.

Häkkinen, P., Purokoski, S., Lajunen, K., 1986. A potentiometric study on the formation of germanic acid and germanate ion with sugar acids and disaccharides in aqueous solution. Finn. Chem. Lett. 13, 93–97.

Hantzsch, A., 1902. Über die Natur alkalischer Lösungen von Metallhydraten. Z. anorg. Chem. 30, 289–324.

Hildebrand, H.H., 1947. Forces between tetrahalide molecules. J. Chem. Phys. 15, 727.

Höll, R., Kling, M., Schroll, E., 2007. Metallogenesis of germanium—A review. Ore Geol. Rev. 30, 145–180.

Ingri, N., 1963. Equilibrium studies of polyanions. 12. Polygermanates in Na(Cl) medium. Acta Chem. Scand. 17, 597–616.

Ingri, N., Schorsch, G., 1963. On the determination of the formation constants of GeO2(OH)23- Using a hydrogen-electrode. Measurements in 3 M Na(Cl)-medium. Acta Chem. Scand. 17, 590–596.

Inzelt, G., 2006. Standard, formal and other characteristic potentials of selected electrode reactions. In: Encyclopedia of Electrochemistry, Vol. 7a, 17–75.

Jolly, W.L., Latimer, W.M., 1952a. The solubility of hydrous germanous oxide and the potential of the germanous oxide-germanic oxide couple. J. Am. Chem. Soc. 74, 5751–5752.

Jolly, W.L., Latimer, W.M., 1952b. The equilibrium Ge(s) + GeO2(s) = 2GeO(g). The heat of formation of germanic oxide. J. Am. Chem. Soc. 74, 5757–5758.

Kanekiyo, Y., Aizawa, S.-i., Koshino, N., Funahashi, S., 2000. Complexation equilibria of oxy-acid-2-amino-2-deoxy-d-gluconic-acid metal(II) ion ternary systems in aqueous solutions as studied by potentiometry. Binding characteristics of borate and germanate. Inorg. Chim. Acta 298, 154–164.

Kosova, T.B., Dem’yanets, L.N., 1988. Behaviour of germanium dioxide in water and aqueous solutions at temperatures of 25–300 oC. Russ. J. Inorg. Chem. 33, 1522–1527.

Kosova, T.B., Dem’yanets, L.N., Uvarova, T.G., 1987. Investigation of the solubility of germanium dioxide in water at 25–300 oC. Russ. J. Inorg. Chem. 32, 430–432.

Krüger, G., Thilo, E., 1958. Über das hydrolytische Verhalten und die Molekulargewichte von Germanat-und Stannationen in schmelzendem Glaubersalz. Z. Physik. Chem. (Leipzig) 209, 190–205.

Kurtz, A.C., Derry, L.A., Chadwick, O.A., 2002. Germanium-silicon fractionation in the weathering environment. Geochim. Cosmochim. Acta 66, 1525–1537.

Latimer, W.M., 1952. Oxidation Potentials. Second edition. Prentice-Hall, Inc., New York.

Laubengayer, A.W., Morton, D.S., 1932. Germanium. XXXIX. The polymorphism of germanium dioxide J. Am. Chem. Soc. 54, 2303–2320.

Lee, C.S., Weng, S.F., 2008. A quaternary germanium (II) phosphate, Na[Ge4(PO4)3]. Acta Cryst. E64, i17.

Lewis, B.L., Andreae, M.O., Froelich, P.N., Mortlock, R.A., 1988. A review of the biogeochemistry of germanium in natural waters. Sci. Total Environ. 73, 107–120.

Lide, D.R., Frederikse, H.P.R. 1995. CRC Handbook of Chemistry and Physics, 76th edition. CRC Press, Cleveland, US.

Lourijsen-Teyssèdre, M., 1955. Contributions à l’étude des phénomènes de condensation en chimie minérale. 10. Constitution des solutions de germanates et d’arsénites. Bull. Soc. Chim. Fr. 22, 1118–1125.

Lovreček, B., Bockris, J.O.M., 1959. The potential of the semiconductor-solution interface in the absence of net current flow: germanium. J. Phys. Chem. 63, 1368–1373.

Marchon, B., Cote, G., Baue,r D., 1979. Some typical behaviours of the β-dodecenyl 8-hydroxyquinoline through its reactions with germanium(IV). J. Inorg. Nucl. Chem. 41, 1353–1363.

May, P.M., 2000. A simple, general and robust function for equilibria in aqueous electrolyte solutions to high ionic strength and temperature. Chem. Commun. 1265–1266.

May, P.M., Rowland, D., 2017. Thermodynamic modeling of aqueous electrolyte systems: Current status. J. Chem. Eng. Data, 62, 2481–2495.

May, P.M., Rowland, D., 2018. JESS, a joint expert speciation system - VI: thermodynamically-consistent standard Gibbs energies of reaction for aqueous solutions. New J. Chem. 42, 7617–7629.

Melcher, F., Buchholz, P. 2014. Germanium. In: Gunn G. (ed) Critical Metals Handbook. BGS, AGU, Wiley, New York, p 177

Mikešová, M., Bartušek, M., 1979. Complexes of germanic acid with mannitol, sorbitol, maltol and with chromotropic and kojic acids. Collect. Czech. Chem. Commun. 44, 3256–3263.

Müller, J.H., 1926. Further studies on the allotrophy of germanium oxide. Proc. Am. Philos. Soc. 65, 183–195.

Mortlock, R.A., Charles, C.D., Froelich, P.N., Zibello, M., Saltzman, J., Burckle, L.D., Hays, J.D., 1991. Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351, 220–223.

Murnane, R.J., Stallard, R.F., 1990. Germanium and silicon in rivers of the Orinoco drainage basin. Nature 344, 749–752.

Nazarenko, V.A., Flyantikova, G.V., 1968. Cationic hydroxo-complexes of germanium(IV) in solutions with ionic strength 0–1. Russ. J. Inorg. Chem. 13, 966–969.

Nazarenko, V.A., Flyantikova, G.V., Lebedeva, N.V., 1962. On the ionic composition of germanium in weakly acidic solutions. Ukrainskii Khimicheskii Zhurnal 28, 66– 67 [in Russian].

Nazarenko, V.A., Varlamova, N.M., 1979. Stability constants of germanium fluoride complexes. Uzbekskii Khimicheskoi Zhurnal 45, 596–600 in Russian].

Parpiev, N.A., 1972. Complexes of some group IV, V, and VI elements. Uzbekskii Khimicheskoi Zhurnal 6, 17–23 [in Russian].

Parpiev, N.A., Maslennikov, I.A., 1968. Investigation of fluoride complexes of silicon and germanium by the ion exchange method. Uzbekskii Khimicheskoi Zhurnal 2, 6–9 [in Russian].

Pokrovski, G.S., Martin, F., Hazemann, J.-L., Schott, J., 2000. An X-ray absorption fine structure spectroscopy study of germanium-organic ligand complexes in aqueous solution. Chem. Geol. 163, 151–165.

Pokrovski, G.S., Schott, J., 1998. Thermodynamic properties of aqueous Ge(IV) hydroxide complexes from 25 to 350oC: Implications for the behavior of germanium and the Ge/Si ratio in hydrothermal fluids. Geochim. Cosmochim. Acta 62, 1631–1642.

Pugh, W., 1929a. Germanium. Part IV. The solubility of germanium dioxide in acids and alkalis. J. Chem. Soc. 1537–1541.

Pugh, W., 1929b. Germanium: Part V. The hydrolysis of sodium germanate and the dissociation constants of germanic acid. J. Chem. Soc. 1994–2001.

Reid Jr., W.E., 1965. Some electrochemical aspects of germanium dissolution. Simultaneous chemical and electrochemical oxidation. J. Phys. Chem. 69, 2269–2277.

Robie, R.A., Waldbaum, D.R., 1968. Thermodynamic properties of minerals and related substances at 298.15K (25.0 °C) and one atmosphere (1.013 bars) pressure and at higher temperatures. U.S. Geol. Surv. Bull. 1259, United States Government Printing Office, Washington, DC. pp. 256.

Rodushkin, I., Ödman, F., Olofsson, R., Axelsson, M.D., 2000. Determination of 60 elements in whole blood by sector field inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 15, 937–944.

Roth, W.A., Schwartz, O., 1926. Physikalisch-chemische Eigenschaften der Lösungen von Germaniumdioxyd (und Arsentrioxyd). Ber. Dtsch. Chem. Ges 59, 338–348.

Ryss, I.G., Kulish, N.F., 1964a. Equilibrium of the first hydrolysis stage of the hexafluorogermanate ion. Russ. J. Inorg. Chem. 9, 603–607.

Ryss, I.G., Kulish, N.F., 1964b. Hydrolysis of potassium hexafluorogermanate in aqueous solution. Russ. J. Inorg. Chem. 9, 752–754.

Ryss, I.G., Kulish, N.F., 1965. Overall equilibrium constant for hydrolysis of the hexafluorogermanate ion GeF62- at 25&grad;. Russ. J. Inorg. Chem. 10, 996–1000.

Schwarz, R., Huf, E., 1931. Beitrage zur Chemie des Germanium. VIII. Mitteilung: Über das Germaniumdioxyd VIII. Z. anorg. allg. Chem. 203, 188–218.

Sohrin, Y., 1991. Formation of halide complexes of methyl- and inorganic germanium(IV) in aqueous hydrohalogenic acid solutions. Bull. Chem. Soc. Jpn 64, 3363–3371.

Stumm, W. Morgan, J.J., 1996. Aquatic Chemistry, 3rd Edn., Chemical Equilibria and Rates in Natural Waters, John Wiley & Sons, Inc., New York.

Vehov, V.A., Birtuhnovskaya, B.S., Doronkina, R.F., 1964. Changes of germanium dioxide solubility in water from 0 to 100°C. Izv. Vusov. Khim. Khim. Tekhnol. 7, 1018–1019; values as given in Pokrovski and Schott, 1998 [in Russian].

Wagman, D.D., Schumm, R.H., Parker, V.B., 1977. National Bureau of Standards Rep. NBSIR 77-1300, A Computer-assisted evaluation of the thermochemical data of the compounds of thorium. National Bureau of Standards, Washington DC, USA.

Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttall, R.L., 1982. The NBS Tables of Chemical Thermodynamic Properties – Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units J. Phys. Chem. Ref. Data 11, Suppl. 2. Cross-ref: J. Phys. Chem. Ref. Data, 1989, 18, 1807.

Winkler, C., 1886. Mittheilungen über das Germanium. J. prakt. Chem. 34, 177–229.

Wolery, T.J., Jové Colón, C.F., 2017. Chemical thermodynamic data. 1. The concept of links to the chemical elements and the historical development of key thermodynamic data. Geochim. Cosmochim. Acta 213, 635–676.

Wood, S.A., Samson, I.M., 2006. The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews 28, 57–102.

de Zoubov, N., Deltombe, E., Vanleugenhaghe, C., Pourbaix, M., 1974. Germanium. In: Atlas of Electrochemical Equilibria in Aqueous Solutions. Pourbaix, M. (ed.) National Association of Corrosion Engineers, Houston, Texas, USA and CEBELCOR, Brussels, chapter IV, section 17.3, pp. 464-474.